Deformable Atlas for Multi-structure Segmentation

نویسندگان

  • Xiaofeng Liu
  • Albert Montillo
  • Ek T. Tan
  • John F. Schenck
  • Paulo R. S. Mendonça
چکیده

We develop a novel deformable atlas method for multistructure segmentation that seamlessly combines the advantages of image-based and atlas-based methods. The method formulates a probabilistic framework that combines prior anatomical knowledge with image-based cues that are specific to the subject's anatomy, and solves it using expectation-maximization method. It improves the segmentation over conventional label fusion methods especially around the structure boundaries, and is robust to large anatomical variation. The proposed method was applied to segment multiple structures in both normal and diseased brains and was shown to significantly improve results especially in diseased brains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How much will linked deformable registrations decrease the quality of multi-atlas segmentation fusions?

BACKGROUND AND PURPOSE Multi-atlas segmentation can yield better results than single atlas segmentation, but practical applications are limited by long calculation times for deformable registration. To shorten the calculation time pre-calculated registrations of atlases could be linked via a single atlas registered in runtime to the current patient. The primary purpose of this work is to invest...

متن کامل

Automatic Segmentation of Parotids in Head and Neck CT Images using Multi-atlas Fusion

Treatment planning for high precision radiotherapy of head and neck (H&N) cancer patients requires accurate delineation of many critical structures. Manual contouring is tedious and often suffers from large interand intra-rater variability. To reduce manual labor, we have previously developed a fully automated, atlas-based method for H&N CT image segmentation [1, 2]. In this work, we adapt the ...

متن کامل

Multiatlas segmentation of thoracic and abdominal anatomy with level set‐based local search

Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes ...

متن کامل

Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a c...

متن کامل

Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model.

PURPOSE The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. METHODS The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 16 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2013